การเปรียบเทียบระหว่างจุดเดือดของสาร

สมมุติว่าเรามีสามช้อน อย่างแรกเราใส่น้ำ 5 หยด; ในวินาที เราใส่แอลกอฮอล์ 5 หยด และหยดที่สาม อะซิโตน 5 หยด หลังจากรอสักครู่ เราจะเห็นว่าอะซิโตนจะเปลี่ยนเป็นก๊าซอย่างรวดเร็ว ตามด้วยแอลกอฮอล์ และหลังจากนั้นไม่นานน้ำก็จะระเหยไป

ตัวอย่างนี้แสดงให้เราเห็นว่าสารไม่เข้าสู่สถานะก๊าซหรือสถานะไอในเวลาเดียวกัน และด้วยเหตุนี้ จุดเดือดของพวกมันจึงแตกต่างกันด้วย

เพื่อทำความเข้าใจว่าทำไมสิ่งนี้จึงเกิดขึ้น เราต้องเข้าใจก่อนเมื่อการเปลี่ยนแปลงจากของเหลวเป็นก๊าซ (หรือเป็นไอในกรณีของน้ำ) เกิดขึ้น โมเลกุลของของเหลวในภาชนะมักถูกกวนตลอดเวลา เนื่องจากมีอิสระในการเคลื่อนย้าย ความดันบรรยากาศออกแรงกับโมเลกุลเหล่านี้เพื่อป้องกันไม่ให้ผ่านเข้าสู่สถานะก๊าซ นอกจากนี้ โมเลกุลยังสร้างพันธะระหว่างโมเลกุลซึ่งกันและกัน ซึ่งทำให้ยากต่อการเปลี่ยนแปลงสถานะทางกายภาพของพวกมัน

อย่างไรก็ตาม เมื่อโมเลกุลเหล่านี้ได้รับพลังงานจลน์ที่กำหนด พวกมันสามารถทำลายพันธะระหว่างโมเลกุลและความเฉื่อย เปลี่ยนเป็นสถานะก๊าซหรือไอ

เมื่อเราเพิ่มอุณหภูมิของของเหลวนี้ เรากำลังจ่ายพลังงานให้กับระบบ ซึ่งทำให้เกิดสิ่งเหล่านี้ โมเลกุลได้รับพลังงานที่จำเป็นในการเปลี่ยนสถานะเร็วขึ้น ซึ่งเกิดขึ้นเมื่อพวกมันไปถึง ของคุณ จุดเดือด.

ในกรณีของตัวอย่าง จุดเดือดของอะซิโตน แอลกอฮอล์ และน้ำ คือ 56.2 °C, 78.5 °C และ 100 °C ที่ระดับน้ำทะเลตามลำดับ ซึ่งจะอธิบายลำดับการระเหยที่กล่าวถึงสำหรับของเหลวเหล่านี้

แต่ทำไมความแตกต่างนี้?

มีปัจจัยพื้นฐานสองประการที่แสดงให้เห็นถึงความแตกต่างในจุดเดือดของสาร ได้แก่ ปฏิสัมพันธ์ระหว่างโมเลกุลและมวลโมลาร์

ลองดูรายการต่อไปนี้เพื่อดูว่าปัจจัยเหล่านี้ส่งผลต่อจุดเดือดของสารอย่างไร:

ตารางที่มีจุดเดือดของสารต่างๆ
  • ปฏิสัมพันธ์ระหว่างโมเลกุล:
ความสัมพันธ์ระหว่างอันตรกิริยาระหว่างโมเลกุลกับจุดเดือด

อย่าเพิ่งหยุด... มีมากขึ้นหลังจากโฆษณา ;)

หากปฏิสัมพันธ์ระหว่างโมเลกุลรุนแรง ก็จำเป็นต้องเพิ่มพลังงานให้กับระบบเพื่อให้สลายตัวและโมเลกุลสามารถผ่านไปยังสถานะก๊าซได้

ความเข้มของปฏิกิริยาระหว่างโมเลกุลเหล่านี้ตามลำดับจากมากไปน้อยดังต่อไปนี้:

พันธะไฮโดรเจน > ไดโพลถาวร > ไดโพลเหนี่ยวนำ

ตัวอย่างเช่น ในตาราง เราจะเห็นว่าจุดเดือดของ butan-1-ol และ ethanoic acid นั้นสูงกว่าจุดเดือดของสารอื่นๆ เนื่องจากสารทั้งสองนี้มีพันธะไฮโดรเจนซึ่งมีปฏิกิริยารุนแรงกว่าสารอื่น

นอกจากนี้ จุดเดือดของโพรพาโนนยังสูงกว่าเพนเทนเนื่องจากปฏิกิริยาของโพรพาโนนคือ ไดโพลถาวรซึ่งมีความเข้มข้นมากกว่าไดโพลเหนี่ยวนำซึ่งเป็นอันตรกิริยาที่กระทำโดย เพนเทน

แต่ทำไมจุดเดือดของโพรพาโนนจึงไม่สูงกว่าเฮกเซน เพราะมันทำปฏิกิริยาไดโพลแบบเหนี่ยวนำด้วย?

นี่คือที่มาของปัจจัยที่สองที่ขัดขวางจุดเดือดของสาร: มวลโมลาร์

  • มวลฟันกราม:
ความสัมพันธ์ระหว่างมวลโมลาร์กับจุดเดือด

หากมวลของโมเลกุลมีขนาดใหญ่ จำเป็นต้องเพิ่มพลังงานให้กับระบบเพื่อให้โมเลกุลสามารถเอาชนะความเฉื่อยและเคลื่อนไปสู่สถานะก๊าซได้

ตัวอย่างเช่น เพนเทนและเฮกเซนทำปฏิกิริยาเดียวกัน ซึ่งเป็นปฏิกิริยาของไดโพลที่ถูกเหนี่ยวนำ แต่มวลโมลาร์ของเฮกเซนนั้นมากกว่า ดังนั้นจุดเดือดของเฮกเซนจึงสูงกว่าของเพนเทน

ในกรณีของบิวทาน-1ออลและกรดเอทาโนอิก ทั้งคู่สร้างพันธะไฮโดรเจนและบิวตัน-1-ออลมีมวลโมลาร์สูงกว่า อย่างไรก็ตาม จุดเดือดของกรดเอทาโนอิกจะสูงกว่าเนื่องจากกรดเอทาโนอิกสองโมเลกุลสามารถสร้างพันธะสองพันธะระหว่างพวกมันได้ ไฮโดรเจน (ผ่านกลุ่ม O และ OH) ในขณะที่บิวตัน-1-ออลสองโมเลกุลสร้างพันธะไฮโดรเจนเพียงตัวเดียวต่อกัน (ผ่าน กลุ่มโอไฮโอ)


โดย เจนนิเฟอร์ โฟกาซา
จบเคมี

คุณต้องการอ้างอิงข้อความนี้ในโรงเรียนหรืองานวิชาการหรือไม่ ดู:

โฟกาซ่า, เจนนิเฟอร์ โรชา วาร์กัส "การเปรียบเทียบระหว่างจุดเดือดของสาร"; โรงเรียนบราซิล. มีจำหน่ายใน: https://brasilescola.uol.com.br/quimica/comparacao-entre-pontos-ebulicao-das-substancias.htm. เข้าถึงเมื่อ 27 มิถุนายน 2021.

c) ( ) ความสามารถในการละลายของน้ำตาลในน้ำเกิดจากการสร้างพันธะไฮโดรเจนระหว่างซูโครสกับโมเลกุลของน้ำ

ปัจจัย Van't Hoff สารละลายไอออนิกและ Van't Hoff Factor

โอ Van't Hoff Factor (i) ใช้ในการคำนวณและวิเคราะห์ คอลลิเคชั่นเอฟเฟค (การเปลี่ยนแปลงคุณสมบัติทางก...

read more
ประเภทของการกัดกร่อน การกัดกร่อนสามประเภท

ประเภทของการกัดกร่อน การกัดกร่อนสามประเภท

"การกัดกร่อน" เป็นศัพท์ทางเคมีที่มักใช้ในชีวิตประจำวันเพื่ออ้างถึง กระบวนการทำลายทั้งหมด บางส่วน ...

read more
สมดุลเคมีที่เป็นเนื้อเดียวกันและต่างกัน

สมดุลเคมีที่เป็นเนื้อเดียวกันและต่างกัน

เมื่อปฏิกิริยาผันกลับได้ถึงจุดที่อัตราที่ผลิตภัณฑ์ก่อตัว (ปฏิกิริยาโดยตรง) และ ความเร็วที่ใช้ผลิต...

read more