Czym są fale radiowe? Historia radia i typy częstotliwości

Fale radiowe są rodzajem promieniowania elektromagnetycznego. Najbardziej znane są z zastosowania w technologiach komunikacyjnych, takich jak telewizja, telefony komórkowe i radia. Urządzenia te odbierają fale radiowe i przekształcają je w drgania mechaniczne w głośniku, tworząc fale dźwiękowe.

Widmo częstotliwości radiowych stanowi stosunkowo niewielką część widma elektromagnetycznego (EM). Widmo EM jest zwykle podzielone na siedem obszarów w kolejności malejącej długości fali i rosnącej energii i częstotliwości.

Zobacz więcej

Pracownik zabrania dzieciom spania po przybyciu do przedszkola

8 oznak, które pokazują, że niepokój był obecny w twoim…

Typowe oznaczenia to: fale radiowe, mikrofale, podczerwień (IR), światło widzialne, ultrafiolet (UV), promieniowanie rentgenowskie i promienie gamma.

Według NASA fale radiowe mają najdłuższe długości fal w widmie EM. Wynoszą one od około 0,04 cala (1 milimetr) do ponad 62 mil (100 kilometrów).

Mają również najniższe częstotliwości, od około 3000 cykli na sekundę, czyli 3 kiloherców, do około 300 miliardów herców, czyli 300 gigaherców.

Widmo radiowe jest zasobem ograniczonym i często porównuje się je do gruntów rolnych. Tak jak rolnicy muszą organizować swoją ziemię, aby uzyskać jak najlepsze zbiory pod względem plonów ilości i różnorodności, widmo radiowe powinno być jak najbardziej podzielone między użytkowników wydajny.

W Brazylii Ministerstwo Nauki, Technologii, Innowacji i Komunikacji zarządza przydziałami częstotliwości w całym widmie radiowym.

Odkrycie

Szkocki fizyk James Clerk Maxwell opracował ujednoliconą teorię elektromagnetyzmu w latach siedemdziesiątych XIX wieku. Przewidział istnienie fal radiowych.

W 1886 roku Heinrich Hertz, niemiecki fizyk, zastosował teorie Maxwella do wytwarzania i odbioru fal radiowych. Hertz używał prostych narzędzi domowych, w tym cewki indukcyjnej i słoika lejdejskiego (rodzaj kondensator składający się ze szklanego słoika z warstwami liści wewnątrz i na zewnątrz) do tworzenia fal elektromagnetyczny.

Hertz stał się pierwszą osobą, która nadawała i odbierała kontrolowane fale radiowe. Na jego cześć jednostka częstotliwości fali EM – jeden cykl na sekundę – została nazwana hercem.

pasma fal radiowych

Widmo radiowe jest ogólnie podzielone na dziewięć pasm:

Zespół zakres częstotliwości Zakres długości fali
Ekstremalnie niska częstotliwość (ELF) <3kHz > 100 km
Bardzo niska częstotliwość (VLF) 3 do 30 kHz 10 do 100 km
Niska częstotliwość (LF) 30 do 300kHz 1m do 10km
Średnia częstotliwość (MF) 300 kHz do 3 MHz 100m do 1km
Wysoka częstotliwość (HF) 3 do 30MHz 10 do 100 metrów
Bardzo wysoka częstotliwość (VHF) 30 do 300MHz 1 do 10 m
Ultra wysoka częstotliwość (UHF) 300 MHz do 3 GHz 10cm do 1m
Bardzo wysoka częstotliwość (SHF) 3 do 30 GHz 1 do 1 cm
Ekstremalnie wysoka częstotliwość (EHF) 30 do 300 GHz 1mm do 1cm

Niskie do średnich częstotliwości

Fale radiowe ELF są najniższymi ze wszystkich częstotliwości radiowych. Mają duży zasięg i są przydatne do komunikowania się z okrętami podwodnymi oraz wewnątrz kopalń i jaskiń.

Według Stanford VLF Group najpotężniejszym naturalnym źródłem fal ELF/VLF jest piorun. Fale wytwarzane przez wyładowania atmosferyczne mogą odbijać się między Ziemią a jonosferą.

Pasma radiowe LF i MF obejmują radio morskie i lotnicze, a także komercyjne radio AM (z modulacją amplitudy). Pasma radiowe AM mieszczą się w zakresie od 535 kiloherców do 1,7 megaherca.

Radio AM ma duży zasięg, szczególnie w nocy, kiedy jonosfera najlepiej odbiera fale z powrotem na Ziemię. Jednak podlega zakłóceniom, które wpływają na jakość dźwięku.

Gdy sygnał jest częściowo blokowany – na przykład przez budynek z metalowymi ścianami, taki jak drapacz chmur – głośność dźwięku jest zmniejszana.

wyższe częstotliwości

Pasma HF, VHF i UHF obejmują radio FM, transmisje telewizyjne, radio publiczne, telefony komórkowe i GPS (globalny system pozycjonowania). Te pasma zwykle wykorzystują „modulację częstotliwości” (FM) do kodowania lub nadrukowywania sygnału audio lub danych na fali nośnej.

W przypadku modulacji częstotliwości amplituda (maksymalny zakres) sygnału pozostaje stała, podczas gdy częstotliwość jest zróżnicowana, większa lub mniejsza, z szybkością i wielkością odpowiadającą sygnałowi audio lub dane.

FM zapewnia lepszą jakość sygnału niż AM, ponieważ czynniki środowiskowe nie wpływają na częstotliwość w taki sposób, jak to robią. wpływają na amplitudę, a odbiornik ignoruje zmiany amplitudy, o ile sygnał pozostaje powyżej progu Minimum. Częstotliwości radiowe FM mieszczą się w zakresie od 88 megaherców do 108 megaherców.

krótkofalowe radio

Radio krótkofalowe wykorzystuje częstotliwości w zakresie HF, od około 1,7 megaherca do 30 megaherców, zgodnie z National Association of Shortwave Broadcasters (NASB). W tym zakresie widmo krótkofalowe jest podzielone na kilka segmentów.

Według NASB na całym świecie istnieją setki stacji krótkofalowych. Stacje krótkofalowe można usłyszeć z odległości tysięcy kilometrów, ponieważ sygnały odbijają się od jonosfery i odbijają setki lub tysiące kilometrów od miejsca ich pochodzenia.

wyższe częstotliwości

SHF i EHF reprezentują najwyższe częstotliwości w paśmie radiowym. Czasami są uważane za część pasma mikrofalowego. Cząsteczki w powietrzu mają tendencję do pochłaniania tych częstotliwości, co ogranicza ich zasięg i zastosowania.

Jednak ich krótkie długości fal pozwalają na kierowanie sygnałów w wąskie wiązki przez anteny satelitarne. Pozwala to na komunikację krótkiego zasięgu i dużej przepustowości między stałymi lokalizacjami.

SHF, na który powietrze ma mniejszy wpływ niż EHF, jest używany w zastosowaniach krótkiego zasięgu, takich jak Wi-Fi, Bluetooth i bezprzewodowy USB (uniwersalna magistrala szeregowa).

Może działać tylko na ścieżkach w linii wzroku, ponieważ fale mają tendencję do odbijania się od obiektów, takich jak samochody, łodzie i samoloty. Ponieważ fale odbijają się od obiektów, SHF może być również używany w radarach.

źródła astronomiczne

Kosmos roi się od źródeł fal radiowych: planet, gwiazd, obłoków gazu i pyłu, galaktyk, pulsarów, a nawet czarnych dziur. Badając je, astronomowie mogą dowiedzieć się o ruchu i składzie chemicznym tych kosmicznych źródeł, a także o procesach, które powodują te emisje.

Radioteleskop „widzi” niebo zupełnie inaczej niż w świetle widzialnym. Zamiast widzieć spiczaste gwiazdy, radioteleskop wychwytuje odległe pulsary, obszary gwiazdotwórcze i pozostałości po supernowych.

Radioteleskopy mogą również wykrywać kwazary, co jest skrótem od quasi-gwiezdnych źródeł radiowych. Kwazar to niezwykle jasne jądro galaktyki zasilane przez supermasywną czarną dziurę.

Kwazary emitują energię w całym spektrum EM, ale nazwa pochodzi od faktu, że pierwsze zidentyfikowane kwazary emitują głównie energię radiową. Kwazary są bardzo energetyczne; niektóre emitują 1000 razy więcej energii niż cała Droga Mleczna.

Radioastronomowie często łączą kilka mniejszych teleskopów w układ, aby uzyskać wyraźniejszy obraz radiowy o wyższej rozdzielczości.

Na przykład radioteleskop Very Large Array (VLA) w Nowym Meksyku składa się z 27 anten ułożonych w ogromny wzór „Y” o średnicy 36 kilometrów.

To najlepszy przepis na mus kawowy, który wymaga tylko 3 składników

Kawa jest jedną z wielkich tradycji nas, Brazylijczyków, ale nie zawsze dobrze jest wypić filiżan...

read more
Tysiącletnia tajemnica tego, jak woda powstała na Ziemi mogła dobiec końca

Tysiącletnia tajemnica tego, jak woda powstała na Ziemi mogła dobiec końca

Naukowcy z renomowanego Lunar and Planetary Laboratory (LPL) na Uniwersytecie w Arizonie dokonali...

read more

Znasz herbatkę z awokado?

Awokado to owoc pochodzący z regionu Ameryki Południowej i Meksyku i należy do rodziny Lauraceae....

read more