벤젠 고리에 이미 치환기가있는 경우이 라디칼은 고리의 다른 모든 H 치환에 영향을 미칩니다. 이 치환기는 오르토 및 파라-디렉터 또는 메타-디렉터 일 수있다. 그러나 질문이 생깁니다.
벤젠 고리에 부착 된 기가 치환 반응의 방향과 반응성에 영향을 미치는 원인은 무엇입니까? |
특정 그룹의 목표 어드바이저 (비활성화)와 다른 그룹의 목표 (활성화)는 무엇입니까? |
이 두 가지 질문은 부름을 이해함으로써 대답됩니다. 전자 효과 이 그룹은 링에서 운동합니다. 이 효과는 전기 음성도 차이 요소 사이에서 치환기가 방향족 핵의 결합을 분극화하여 일부 고리 탄소에 양성 특성을 교대로 유도하고 나머지는 음성 특성을 유지합니다.
특성을 가진 탄소 원자에서 새로운 치환이 발생합니다. 부정. |
원소의 전기 음성도 순서를 염두에두고 방향 고리에서 이러한 전자 효과가 어떻게 발생하는지 살펴 보겠습니다: F> O> N> Cl> Br> S> C> I> H.
첫 번째 경우: 급진적 활성화 또는 직감 감독:
예를 들어, 벤졸 (페놀) 분자 아래의 경우 산소는 가장 전기 음성이 높은 원소이므로 그것은 전자를 그 자체로 끌어 당겨 탄소가 부분적으로 양전하를 띠게하여 교대 고리 분극. 음수 위치는 정확히 ortho 및 para 위치입니다. 그래서 -OH 그룹은 활성화 라디칼 또는 ortho-to-directors입니다.. 이것은 아래의 페놀 질화 반응에서 볼 수 있으며, 생성물로서 o- 니트로 페놀 및 p- 니트로 페놀을 생성합니다.
두 번째 경우: 급진적 또는 메타 리더 비활성화:
이제 니트로 벤젠의 경우를 고려하십시오.
이 예에서 산소는 가장 전기 음성적인 원소로 남아 있기 때문에 질소로 만들어진 결합을 그 자체로 끌어 당깁니다. 이것은 부분적으로 양전하를 띠고, 그것에 부착 된 탄소 원자가 음의 극성이되도록 유도합니다. 연속적으로. 따라서 음수가되고 대체에 가장 취약한 위치는 다음 위치입니다. 골, 따라서 비활성화.
이제이 전자 효과를 자세히 살펴보십시오. 공명 효과.
공명 효과 이중 또는 삼중 결합의 π (pi) 결합에서 전자가 벤젠 고리 자체와 공명 할 때 전자의 인력 또는 반발입니다. |
알 수 있듯이 NO2 그룹은 고리에서 전자를 가져 와서 전자 밀도를 감소시키기 때문에 고리를 비활성화합니다. 따라서 공격하여 치환을하는 그룹 (친전 자체)은 양성이므로 음전하를 띠는 메타 위치를 우선적으로 공격합니다.
이 사실은 메타 위치에서만 치환이 일어나는 니트로 벤젠의 단 염소화 반응에서 볼 수 있습니다.
작성자: Jennifer Fogaça
화학 전공
브라질 학교 팀
출처: 브라질 학교- https://brasilescola.uol.com.br/quimica/efeitos-eletronicos-radicais-meta-orto-para-dirigentes.htm