메타 및 직교 자 급진주의 전자 효과

벤젠 고리에 이미 치환기가있는 경우이 라디칼은 고리의 다른 모든 H 치환에 영향을 미칩니다. 이 치환기는 오르토 및 파라-디렉터 또는 메타-디렉터 일 수있다. 그러나 질문이 생깁니다.

벤젠 고리에 부착 된 기가 치환 반응의 방향과 반응성에 영향을 미치는 원인은 무엇입니까?
특정 그룹의 목표 어드바이저 (비활성화)와 다른 그룹의 목표 (활성화)는 무엇입니까?

이 두 가지 질문은 부름을 이해함으로써 대답됩니다. 전자 효과 이 그룹은 링에서 운동합니다. 이 효과는 전기 음성도 차이 요소 사이에서 치환기가 방향족 핵의 결합을 분극화하여 일부 고리 탄소에 양성 특성을 교대로 유도하고 나머지는 음성 특성을 유지합니다.

특성을 가진 탄소 원자에서 새로운 치환이 발생합니다. 부정.

원소의 전기 음성도 순서를 염두에두고 방향 고리에서 이러한 전자 효과가 어떻게 발생하는지 살펴 보겠습니다: F> O> N> Cl> Br> S> C> I> H.

첫 번째 경우: 급진적 활성화 또는 직감 감독:

예를 들어, 벤졸 (페놀) 분자 아래의 경우 산소는 가장 전기 음성이 높은 원소이므로 그것은 전자를 그 자체로 끌어 당겨 탄소가 부분적으로 양전하를 띠게하여 교대 고리 분극. 음수 위치는 정확히 ortho 및 para 위치입니다. 그래서 -OH 그룹은 활성화 라디칼 또는 ortho-to-directors입니다.. 이것은 아래의 페놀 질화 반응에서 볼 수 있으며, 생성물로서 o- 니트로 페놀 및 p- 니트로 페놀을 생성합니다.

활성화 라디칼에 의한 벤젠 고리의 교번 분극

두 번째 경우: 급진적 또는 메타 리더 비활성화:

이제 니트로 벤젠의 경우를 고려하십시오.

비활성화 라디칼에 의한 니트로 벤젠 벤젠 고리의 교대 분극

이 예에서 산소는 가장 전기 음성적인 원소로 남아 있기 때문에 질소로 만들어진 결합을 그 자체로 끌어 당깁니다. 이것은 부분적으로 양전하를 띠고, 그것에 부착 된 탄소 원자가 음의 극성이되도록 유도합니다. 연속적으로. 따라서 음수가되고 대체에 가장 취약한 위치는 다음 위치입니다. , 따라서 비활성화.

이제이 전자 효과를 자세히 살펴보십시오. 공명 효과.

공명 효과 이중 또는 삼중 결합의 π (pi) 결합에서 전자가 벤젠 고리 자체와 공명 할 때 전자의 인력 또는 반발입니다.
비활성화 라디칼에 의한 벤젠 고리에 대한 공명 효과

알 수 있듯이 NO2 그룹은 고리에서 전자를 가져 와서 전자 밀도를 감소시키기 때문에 고리를 비활성화합니다. 따라서 공격하여 치환을하는 그룹 (친전 자체)은 양성이므로 음전하를 띠는 메타 위치를 우선적으로 공격합니다.

이 사실은 메타 위치에서만 치환이 일어나는 니트로 벤젠의 단 염소화 반응에서 볼 수 있습니다.

메타 지향성 니트로 벤젠 모노 염소화 반응


작성자: Jennifer Fogaça
화학 전공
브라질 학교 팀

출처: 브라질 학교- https://brasilescola.uol.com.br/quimica/efeitos-eletronicos-radicais-meta-orto-para-dirigentes.htm

생태 발자국. 생태 발자국 개념

그만큼 생태 발자국 천연 자원의 소비, 탐사 및 사용과 이러한 요소를 자연스럽게 대체하는 행성의 능력 사이의 관계를 나타 내기 위해 만들어진 개념입니다. 따라서 인간 활동을 ...

read more
탄화수소 란?

탄화수소 란?

탄화수소는 탄소와 수소 원자 만있는 유기 화합물 그룹입니다.엑스H와이.그들은 유기 화학에서 연구되고 일상 생활에서 사용되는 가장 중요한 화합물입니다. 그들은 일반적으로 석유에...

read more
지구 온난화: 원인, 결과, 비판, 마인드 맵

지구 온난화: 원인, 결과, 비판, 마인드 맵

영형 지구 온난화 이론적으로는 인간의 관행에 기인 한 최근 행성의 평균 기온 상승을 나타냅니다. 과학 분야에서는 이에 대한 의견 차이가 있습니다. 지구 전체에 영향을 미치는이...

read more