Geometric representation of the sum of complex numbers

The set of complex numbers is formed by all z numbers that can be written in the following form:

z = a + bi

In this form, i = √(– 1). In these numbers, a is called real part and b is called imaginary part. To represent the numberscomplexes geometrically, we will use vectors on the plan.

Geometric representation of complex numbers

You numberscomplexes can be represented geometrically in a flat built similarly to Cartesian plane: two perpendicular axes which, in turn, are number lines. Furthermore, these two lines are found at its origins.

The difference between this plan and the flatCartesian it's just the interpretation: the x-axis of this plane is called the real axis, and the y axis is called the imaginary axis. So, to represent a complex number in this plane, known as plan of Argand-Gauss, we must turn this number into an ordered pair, where the x coordinate is the partreal of the complex number and the y coordinate is yours. partimaginary.

After that, the vector that represents a numbercomplex

is always the straight segment oriented that starts at the origin of the plan of Argand-Gauss and ends at point (a, b), where a is a partreal of the complex number and b is its imaginary part.

In other words, the biggest difference between these plans is that, in flatCartesian, we score points and, in the plan of Argand-Gauss, we use the real and imaginary part of complex numbers to mark vectors.

The following image shows the representationgeometric of numbercomplex z = 2 + 3i.

Geometric representation of complex number addition

Given the complexes z = a + bi and u = c + di, we have the following algebraic addition:

Do not stop now... There's more after the advertising ;)

a + u = a + bi + c + di

a + u = a + c + (b + d) i

Note that from the point of view geometric, what is done when adding numberscomplexes is the sum of their coordinates on the same axis.

Geometrically, the sum between the complexes z = a + bi and u = c + di can be done as follows:

1 – Draw vectors z and u in the plane of Argand-Gauss;

2 – Download a copy of the vector u for the endpoint of vector z. In other words, draw a vector the same length as vector u and parallel to it from point (a, b).

3 – Download a z’ copy of vector z for the endpoint of vector u;

4 – Note that the vectors u, u’, z and z’ form a parallelogram, and construct a vector v that starts from the origin and ends at the meeting between the vectors u’ and z’.

5 - v = z + u

Note this construction in the image below:

O vector v is just the diagonal of this parallelogram formed by the vectors u, u’, z and z’.

Example

Consider vector a = 1 + 7i and vector b = 3 – 2i. See the construction of the parallelogram from these two vectors:

Thus, it is possible to determine the result of the sum between these two vectors observing the coordinates of the vector v = (4, 5). Therefore, the complex number v = 4 + 5i.


By Luiz Paulo Moreira
Graduated in Mathematics

Would you like to reference this text in a school or academic work? Look:

SILVA, Luiz Paulo Moreira. "Geometric representation of the sum of complex numbers"; Brazil School. Available in: https://brasilescola.uol.com.br/matematica/representacao-geometrica-soma-numeros-complexos.htm. Accessed on June 28, 2021.

Square root: what is it and how to solve it?

Square root: what is it and how to solve it?

THE square root is a kind of mathematical operation, just like addition, multiplication, and othe...

read more

Second Degree Equations

All equation that can be written in the form ax2 + bx + c = 0 will be called second degree equati...

read more

Mathematics and Music. Mathematics and Music: what does it have to do?

Is there any relationship between Mathematics and Music? Come to think of it, examining it carefu...

read more